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Left-Orderable groups

Throughout, Γ is an infinite group.

Definition
A total order on a group Γ is a left-order if

g < h ⇒ kg < kh.

We say that Γ is left-orderable if there is some left-order on it.
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Examples

Z,Q,R are all left-orderable groups.

If H, K are left-orderable groups and

1 → K → Γ → H → 1

Γ is left-orderable.

Γ = ⟨x , y | yxy−1 = x−1⟩ is a semi-direct product Z ⋊ Z,
hence left-orderable.
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Different Characterization

Definition
We say that P ⊂ Γ is a positive cone if

P · P ⊂ P

P ⊔ P−1 = Γ − {1}

Proposition
If < is a left-order on Γ,

P< := {g ∈ Γ : g > id}

is a positive cone.
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Proof

If g , h > id,

id < h ⇒ id < g < gh

Hence P< · P< ⊂ P<.

Since < is a total order, exactly one of g = id, g > id or g < id is
true. In the last case,

g < id ⇒ id < g−1,

Hence P< ⊔ P−1
< = Γ − {1}.
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Duality between Orders and Cones

On the other hand, if P is a positive cone, we get a left-order :

g <P h ⇔ g−1h ∈ P.

Proposition
P = P<P

g < h ⇔ g <P< h
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Definition of LO(Γ)

Since left-orders and positive cones are interchangeable,

Definition
The space of left-orders of Γ is defined as

LO(Γ) :=
{

P ∈ 2Γ : P is a positive cone
}
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LO(Γ) is Compact Polish

Axioms for positive cones are universal ⇝ LO(Γ) is a closed
subspace of 2Γ, hence compact Polish.

∀g , h, (g ∈ P ∧ h ∈ P) → gh ∈ P ⇝
⋂
g ,h

Uc
g ∪ Uc

h ∪ Ugh

Antoine Poulin Borel Complexity of Archimedean Orders



Introduction to L.O groups
CBERs related to L.O groups

Complexity of Aut(Z2) ↷ LO(Z2)

Definition of Left-Orderable Groups
Positive cones
Space of Left-Orderings
Archimedean Orders

Definition of Archimedean Orders

Definition
We say that an order is Archimedean if there is for any g , h ∈ P<,

∃n, h < gn

We extend this definition to positive cones. We also have a Polish
space of Archimedean order, Ar(Γ).
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Examples

Z,Q,R are Archimedean-orderable.

Γ = ⟨x , y | yxy−1 = x−1⟩ admits no Archimedean order.
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Non-example

WLOG, x , y ∈ P. Suppose there is n with y < xn.

y < xn

⇒y < yx−ny−1

⇒ id < x−ny−1

⇒xn < y−1

But then both y , y−1 are positive.
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Definition of Conjugacy Action

Definition
The conjugacy action Γ ↷ LO(Γ) is defined by

g · P := g−1Pg =
{

g−1hg : h ∈ P
}

.

In particular,

g <k·P h ⇔ gk <P hk.
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Definition of Isomorphism Action

The conjugacy action is the restriction of the following action :

Definition
The isomorphism action Aut(Γ) ↷ LO(Γ) is defined by

ϕ · P := ϕ(P) = {ϕ(h) : h ∈ P} .

Both these actions restrict to actions

Γ ↷ Ar(Γ)
Aut(Γ) ↷ Ar(Γ)
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Motivation

We are interested in the complexity of GL(Z2) ↷ Ar(Z2),
motivated by

Theorem, Calderoni- Marker- Motto Ros- Shani
GL(Q2) ↷ Ar(Q2) is not smooth.

Still not known whether it is hyperfinite.
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What does Ar(Z2) look like ?

Our first goal is to determine what space Ar(Z2) is.

Theorem, folklore
If P ∈ LO(Z2), there is a line ∆ such that R2 − ∆ has one
component with only positive elements and one component with
only negative elements.

If P ∈ Ar(Z2), ∆ ∩ Z2 = ∅.
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The big picture

∆

P

Figure – A positive cone in Z2. Bigger dots represent elements of P and
the shaded region is the half-plane containing only positive elements.
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Sketch of Proof

Observe that one can extend P to Q2.

Consider the following partition :
R1 = {x ∈ R2 : ∃ϵ, B(x , ϵ) ∩ Q2 ⊂ P}
R2 = {x ∈ R2 : ∃ϵ, B(x , ϵ) ∩ Q2 ⊂ −P}
∆ = {x ∈ R2 : ∀ϵ, B(x , ϵ) ∩ Q2 ̸⊂ P, −P}

Prove that Ri are non-empty and open. Prove that ∆ is a
linear subspace.
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Consequences

There is a 2-1 map from Ar(Z2) to line ∆ which do not intersect

Z2. This is equivalent to having
(

α
1

)
∈ ∆, where α is irrational.

We can act as if the map is 1-1, since in each preimage we can

pick canonically the cone with
(

0
1

)
∈ P.
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Definition

Definition
The action by Möbius transformations is the action
GL(Z2) ↷ Irr defined by(

a b
c d

)
· α := aα + b

cα + d
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Action on lines

If
(

α
1

)
∈ ∆,

(
a b
c d

)
·
(

α
1

)
∈
(

a b
c d

)
· ∆

⇒
(

aα + b
cα + d

)
∈
(

a b
c d

)
· ∆

⇒
(

aα+b
cα+d

1

)
∈
(

a b
c d

)
· ∆
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Recap

The action GL(Z2) ↷ Ar(Z2) is bireducible to the action
GL(Z2) on lines with irrational slope.

The action GL(Z2) on lines with irrational slope is bireducible
with the action by Möbius transformations.
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Continuous fractions

There is an homeomorphism Irr ∼= NN defined by

[a0, a1, ...] := a0 + 1
a1 + 1

a2+...

Goal : Hope that Möbius transformations correspond to a
well-studied CBER.
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Generators for GL(Z2)

We know that GL(Z2) is generated by(
0 1
1 0

)
,

(
1 1
0 1

)
,

(
−1 0
0 1

)
.

These matrices act nicely through Möbius transformations.
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First two matrices

We have that(
0 1
1 0

)
· [a0, a1, ...] =

{
[a1, a2, a3, ...] if a0 = 0
[ 0, a0, a1, ...] if a0 ̸= 0(

1 1
0 1

)
· [a0, a1, ...] = [a0 + 1, a1, ...]

Chaining these two matrices, we can get tail equivalence relation

[a0, ..., an, c0, c1, ...] ∼ [b0, ..., bm, c0, c1, ...]
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Last Matrix

What about
(

−1 0
0 1

)
?

Theorem, noted in Jackson-Kechris-Louveau, proof found in
Hardy-Wright
The orbit equivalence of Möbius transformations on NN is exactly
tail equivalence relation.
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Theorem

Theorem
The isomorphism relation GL(Z2) ↷ Ar(Z2) is hyperfinite, but not
smooth.

Question
If R = Z[ 1

n ] is an intermediate ring, how complicated is
GL(R2) ↷ Ar(R2) ?
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Thank you !
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